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ABSTRACT 

In liquid chromatography, the retention of ionogenic solutes is a strong function of the pH of the mobile phase, with different 
solutes showing different behaviour, both qualitatively (e.g., acids vs. bases) and quantitatively (values of dissociation constants). 
Thus, pH will also affect selectivity and it can be used as a parameter for optimizing separations. In many instances, such 
optimization studies will require an accurate description of retention as a function of pH. In this paper, attention is focused on 
basic models describing retention as a function of pH and their use in practice. The theoretical, sigmoidal curve is discussed and a 
number of possible causes of deviations are considered. The inaccuracies introduced by linearly or quadratically interpolating part 
of a sigmoidal curve are addressed, in addition to the sensitivity of sigmoidal interpolation to experimental errors. 
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1. INTRODUCTION 

In developing and optimizing methods for 
high-performance liquid chromatography 
(HPLC), the manipulation of retention and 
selectivity through variation of suitable parame- 
ters plays a key role [l]. The main reason for this 
is the lack of alternative strategies. Unlike the 
situation in, for example, capillary gas chroma- 
tography and capillary zone electrophoresis, 
theoretical plates in HPLC are difficult to 
achieve. The typical approach to optimizing 
HPLC separations, therefore, involves the fol- 
lowing steps: (1) simplifying the chromatogram, 
i.e., minimizing the number of peaks, using 
selective sample preparation methods, multi-col- 
umn techniques and selective detection; (2) 
optimizing the selectivity, i.e., moving from an 
initial, more or less random distribution of peaks 
towards an optimum distribution of the relevant 
peaks over the chromatogram; and (3) optimiz- 
ing the system (column dimensions, particle size, 
flow-rate, etc.), i.e., minimizing the costs of the 
analysis in terms of analysis time, pressure drop, 
eluent consumption, etc., while achieving 
adequate resolution and sensitivity. 

Optimizing the solvent pH could be a factor in 
all three stages. By establishing appropriate pH 
values, potentially interfering compounds can be 
selectively removed from the sample (step 1). 
For instance, if at a certain pH the relevant 
components in the sample are neutral, positively 
and negatively charged compounds can be re- 
moved using cation- and anion-exchange materi- 
als, respectively. Essentially, the pH used for the 
actual separation (step 2) is independent of the 
sample preparation process. The two steps can 
be independently optimized, with great advan- 
tages in terms of simplicity and requirements 
(time, number of experiments). An effect of pH 
on both the selectivity and the sensitivity of 
detection is feasible (see, e.g., ref. 2) yet in 
most instances such effects will not be dramatic 
and the advantages of individually addressing the 
above three steps easily outweigh the disadvan- 
tages. In cases in which optimizing the detection 
pH leads to important gains, one possible solu- 
tion is the postcolumn addition of a high-capacity 
buffer of suitable pH. In this paper we shall 

focus exclusively on the role of pH for optimiz- 
ing the separation; i.e., the effects of pH within 
the analytical column. 

2. THEORETICAL MODELS 

For a weak acid (denoted by HA), the effect 
of pH on retention can easily be expressed in an 
algebraic equation. Two assumptions are typical- 
ly made: 

(i) the dissociation equilibrium of the acid can 
be expressed as 

K 
aH+aA- CH+C*- 

a,HA 
z-z- 

‘HA ‘HA 
(1) 

where Ka,HA is the acid dissociation constant of 
the compound, ai is the thermodynamic activity 
of the indicated species in solution and ci is its 
concentration; and 

(ii) the observed capacity factor of species A 
is a weighted average of those of the two forms 
(HA and A-): 

k, = 
‘HA,mkHA + cA- mkA- 

CHA,m + ‘A-,: 
(2) 

where ci m is the concentration of species i in the 
mobile phase. For reasons of simplicity, the 
subscript m will be omitted below, as concen- 
trations in the stationary phase are not relevant 
in the context. This second assumption is equiva- 
lent to Horvith et aZ.‘s assumption of an in- 
dependent distribution of each solute species 
over the mobile and stationary phases [3]. 

Combining eqns. 1 and 2 leads to a general 
equation relating the observed capacity factor to 
the acid dissociation constant K, or its negative 
logarithm pK, and the acidity of the mobile 
phase (cH+ or pH): 

k, = 
Cu+kuA + &,A~,- 

‘H+ + Ka,A 

10-pHk 
HA 

+ 10-PK..^k 
A- = 

~o-PH + lo-P&,A 

Eqn. 3 contains one variable (pH) and three 
coefficients (Ka,A, kHA and kA-). For a given set 
of values for the three solute-specific coefficients, 
eqn. 3 represents the well known sigmoidal curve 
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Fig. 1. Typical sigmoidal curve, depicting retention as a 
function of pH according to eqn. 3. Coefficients: kHA = 10, 
k,- = 0.1 and pK, = 7. 

illustrated in Fig. 1. In reversed-phase liquid 
chromatography (RPLC) the retention of ion- 
ized species (such as A-) is typically low, where- 
as the retention of neutral species (such as HA) 
is much higher. For a weak acid, this results in 
the curve depicted in Fig. 1. At low pH ioniza- 
tion is suppressed and retention is high. At high 
pH the solute is completely ionized and retention 
is low. For a basic compound (e.g., an amine) 
the situation is reversed. At high pH the solute 
will be neutral and retained more or less strong- 
ly. At low pH it will be charged (i.e., proton- 
ated, RNH:) and eluted much earlier. Indeed, 
we can use the typical behaviour of acidic and 
basic solutes outlined above for a pragmatic 
definition of acidic and basic solutes in RPLC, as 
follows [4]: 

(i) A weakly acidic solute is retained more 
strongly at the lower end of the practical pH 
range than it is at the higher end. 

(ii) A weakly basic solute is one that is re- 
tained less at lower pH than at higher pH. 

(iii) A strongly acidic solute is one that is 
dissociated (and hence negatively charged) 
throughout the pH range. Retention is not 
affected by pH. It tends to be low, but can be 
decreased with the aid of a cationic pairing ion 
(e.g., a tetraalkylammonium compound). 

(iv) A strongly basic solute is one that is 
protonated (and hence positively charged) 
throughout the pH range. Retention is not 
affected by pH. It tends to be low, but can be 
increased with the aid of an anionic pairing ion 
(e.g., an alkylsulphonate). 

(v) A neutral solute is uncharged throughout 
the pH range. Retention is not affected by pH or 
by the addition of pairing ions. 

Using the above pragmatic definitions, a com- 
pound may be classified differently when the 
practical pH range changes. For example, silica- 
based columns are typically restricted to a range 
of 2 < pH < 7, whereas polystyrene- or graphitic 
carbon-based columns may allow much wider 
ranges (e.g., 1 <pH< 13). As a consequence, a 
compound may be classified as a strong base on 
one column, whereas it may be a weak base on 
another column. Using the above conventions, 
therefore, does not result in an absolute classifi- 
cation of solutes, but in a practical classification 
in relation to the type of chromatography being 
performed. 

The effects of pH on retention and peak shape 
and of the addition of negatively and positively 
charged pairing ions on retention for the five 
identified classes of solutes is summarized in 
Table 1. 

TABLE 1 

INDICATION OF THE EFFECTS OF pH AND OF 
NEGATIVELY (PI-) AND POSITIVELY CHARGED 
(PI+) ION-PAIRING AGENTS ON THE CHROMATO- 
GRAPHIC BEHAVIOUR (CAPACITY FACTOR, k, AND 
PEAK SHAPE) OF FIVE CLASSES OF SOLUTES 

Solute classes: SA = strong acid; WA= weak acid; N = 
neutral; WB = weak base; SB = strong base. Magnitude of 
effects: L = large; S = small; V= variable; N = negligible. 

Solute Effect Effect Effect of Effect of 
class of pH of pH on PI- on k PI’ on k 

on k peak shape 

SA S V S L 
WA L L S V 
N N N N N 
WB L L V S 
SB S V L S 
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3. COMPLICATIONS 

Having come to a very simple description of 
retention as a function of pH, we should add that 
there are several factors causing deviations in 
real life. These are summarized below. 

(i) Eqn. 1 strictly applies in terms of activities 
rather than concentrations. If there is no strict 
proportionality between the two, eqn. 3 will not 
strictly be valid. Practical consequences are as 
follows: 

(a) The dissociation constant will be affected 
by the total ionic strength, as the latter causes 
different ratios between activities and concen- 
trations (i.e., activity coefficients) for ionic and 
non-ionic species. 

Chromatographers often vary the ionic 
strength of their mobile phase unintentionally, 
but significantly. For example, Fig. 2 shows the 
(calculated) ionic strength for buffers prepared 
by titrating a 0.287 M solution of triethylamine 
with a 0.1764 M solution of phosphoric acid. 
Optimistically (i.e., assuming the widest column 
stability range of 1 < pH < 8), the resulting buf- 
fers may be applied on silica-based LC columns 
in the ranges 1 < pH < 3 and 6 < pH < 8. In the 
important “central” region (3 < pH < 6) phos- 
phate (and triethylamine) solutions have no 
buffer capacity. Variations in the ionic strength of 
up to a factor three are seen to occur in Fig. 2. 

Fig. 2. Calculated total ionic strength as a function of 
(calculated) pH for buffers prepared by titrating a 0.287 M 
solution of triethylamine with a 0.1764 M solution of phos- 
phoric acid. 

In order to maintain a constant ionic strength, 
measured amounts of a dissociating salt must be 
added to the mobile phase. 

(b) Activity coefficients, may be affected by 
the solvent, so that K, is a function of the 
solvent composition. 

(ii) The true pH of the mobile phase is the 
negative logarithm of the activity of the H+ 
species. Again, the activity coefficient will be 
affected by the environment. Thus, if an aqueous 
buffer of pH 5 is mixed with an organic solvent, 
the true pH as defined above will be different 
from that of the original buffer [5]. While correc- 
tions can be made [6,7], this is an undesirable 
complicating factor for LC optimization studies. 
Rather than repeatedly converting between the 
pH of the aqueous fraction and true pH in a 
mixed solvent, we consistently refer to the 
former as the pH of the eluent. Using such an 
“operational pH” is a perfectly legitimate and 
very practical convention in the context. How- 
ever, other results from the optimization process 
than the optimum mobile phase composition and 
pH should be interpreted with care. For exam- 
ple, pK, values obtained from fitting an equation 
such as eqn. 3 to a series of data are not absolute 
(“true”) values, but refer to the above conven- 
tion for defining the pH. For a more extensive 
discussion, see ref. 8. 

(iii) The stationary phase may affect the va- 
lidity of eqn. 3. By postulating eqn. 2 it is 
assumed that there is a given, pH-independent 
capacity factor for each individual species (HA 
and A-). This assumption is no longer reason- 
able if the stationary phase is affected con- 
siderably by variations in pH. An obvious exam- 
ple is the dissociation equilibrium of silanol 
groups on silica-based stationary phases. This is 
a gradual process, i.e., the fraction of ionized 
silanol groups increases gradually with increasing 
pH over a broad range centered around 6.5 [9]. 
Ionic interactions (attraction or repulsion) be- 
tween electrically charged solute molecules and 
dissociated silanols may significantly affect the 
shape of retention vs. pH curves in RPLC [lo]. 

(iv) Solutes may show multiple ionization 
equilibria. In the case of diprotic acids or bases, 
Fig. 1 may show two steps rather than one. 
However, if the pH range studied is limited, as is 
typically the case on silica-based columns (2 < 
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pH < 7), it is uncommon that both steps are 
observed within the practical “window”. How- 
ever, deviations from eqn. 3 have been ob- 
served, for example, for phthalic acid [ll]. The 
situation is more complicated for zwitterions, 
i.e., compounds which contain both acidic and 
basic functions. In principle, characteristic bell- 
shaped curves may be obtained for retention vs. 
pH, which cannot be described by eqn. 3. 
Horvath et al. [3] have published the equations 
equivalent to eqn. 3 for diprotic acids and 
zwitterions. A general formalism to deal with 
multi-protic acids and based can be found in ref. 
8. 

(v) In addition to dissociation, there may be 
other pH-dependent processes involving the sol- 
ute species. One example concerns ion-pair 
interactions between solute ion and buffer com- 
ponents. For example, a solute cation may 
associate with phosphate ions. If the degree of 
association and/or the retention of the ion pair is 
different for the different phosphate ions (phos- 
phate, hydrogenphosphate, dihydrogenphos- 
phate), this causes a pH-dependent contribution 
to the observed retention of the solute. 

Despite the possible deviations due to all the 
sources listed above, eqn. 3 is a very good 
starting point [3,12]. If necessary, the equation 
can be modified to deal with deviations. Finally, 
it is worth mentioning that there are many other 
factors that may complicate the retention be- 
haviour of solutes in RPLC, but do not affect the 
validity of eqn. 3. Notably, all factors that affect 
the values of k,, and/or k,- are irrelevant, as 
long as the assumptions to treat these two 
parameters as constants (independent of pH) 
and to calculate k, as a weighted average remain 
unaffected. The mechanism of separation is thus 
not an issue here. The retention of either species 
may be controlled by “solvophobic”, “silano- 
philic” or electrostatic interactions, or by any 
combination thereof. In fact, it is possible, both 
theoretically (eqn. 3) and practically [13], to deal 
with negative values of k,-, which may result 
from electrostatic exclusion of ions. 

4. EFFECT OF SOLVENT COMPOSITION 

RPLC is usually performed with mobile phases 
consisting of a mixture of water (or an aqueous 

buffer) and an organic solvent. When optimizing 
solvent selectivity, i.e., the type(s) and concen- 
trations(s) of organic solvent(s), the concept of 
isoeluotropic solvents [14] is frequently em- 
ployed. In this case, the selectivity (solvent 
composition) can be varied in such a way that the 
overall retention is kept roughly constant. If pH 
is used to vary the selectivity, this (or a similar) 
concept cannot be applied. Varying the pH can 
greatly affect the retention of ionogenic solutes 
(see Fig. 1) and the pH corresponding to op- 
timum selectivity between two or more solutes 
may lead to very high or very low retention at a 
specific mobile phase composition. The logical 
response is to adapt the mobile phase composi- 
tion so as to derive the maximum benefit from 
pH-induced selectivity effects. 

The variation of retention (expressed as the 
natural logarithm of the capacity factor) with 
binary composition (volume fraction of organic 
solvent in water, 40) can be expressed by a 
quadratic function [ 151: 

lnk=A~2+B~+C (4) 

where A, B and C are coefficients which depend 
on the type of organic solvent (modifier), the 
solute and the stationary phase. Over a limited 
range of capacity factors (typically 1 < k < 10) a 
straight-line approximation often suffices 

In k = In k, - Sq (5) 

The coefficients In k, and S, which are suscep- 
tible to the same influences as the coefficients in 
eqn. 4, can be interpreted as the extrapolated 
retention in pure water and the rate of variation 
of retention with varying modifier content. Eqn. 
4 or the simplified eqn. 5 can be thought to 
represent the variation of the retention of each 
individual species (e.g., HA or A-) with compo- 
sition. As mentioned before, the third coefficient 
in eqn. 3, K,, should also be assumed to vary 
with pH. The variation of In K, with rp may be 
described by a quadratic equation similar to eqn. 
4 or by a cubic equation [8]. 

By starting with eqn. 3 and assuming the 
coefficients in that equation to be (logarithmical- 
ly) linear (eqn. 5), quadratic (eqn. 4) or cubic 
functions of composition, one can obtain equa- 
tions that express the capacity factor as a func- 
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tion of both pH and composition. Alternatively, 
eqn. 4 or 5 can be taken as the starting point and 
eqn. 3 can be assumed to describe the variation 
of the coefficients with pH. Lopes Marques and 
Schoenmakers [8] have evaluated a number of 
such equations. They obtained the best results by 
starting with eqn. 3 and assuming ln KHn, In kA- 
and In K, all to vary quadratically with rp 
according to 

ln &-I.4 = In kLA + s,,cp + THA’p2 (6) 

Ink,-=lnki-+S,-cp+T,-(p* 

In K, = In Kz + QI(p + Q2(p2 

(7) 

(8) 

The following equation was derived: 

k= 

kii,, ex&Lcp + THAv2) cH+ + 

k:-Kz expKS,- + Q,b + VA- + Q,>o’l 

cH+ + Kt exdQ,cp + Q,(P’) 

(9 

Eqn. 9 contains nine coefficients (three each 
from eqns. 6-8) and the two variables pH and 4p. 
While there is some theoretical foundation for 
eqns. 3, 6 and 7, eqn. 8 is essentially empirical. 
Eqn. 9 is only one of a number of partly 
theoretical, partly empirical equations that can 
be derived. It was found to behave best in a 
practical evaluation [8] of possible model equa- 
tions. For describing the variation of retention 
with pH and composition by a single equation it 
is the recommended form. 

5. EMPIRICAL AND MODEL-FREE APPROACHES 

A common way of modelling curves or sur- 
faces is by interpolation. Characteristics of inter- 
polation are that (i) experimental data are avail- 
able in all directions from the point at which a 
value is needed (e.g., obtaining a value at pH 5 
from data at pH 4 and pH 6) and (ii) a model is 
used that fits exactly through all data points 
(e.g., a straight line through two points or a 
quadratic curve through three points). 

Interpolations can be performed with theoret- 
ical equations, such as eqn. 3 in the pH domain 

or eqn. 4 in the composition domain (both 
requiring three experimental data points), or 
even with eqn. 9 in a two-dimensional pH- 
composition space (requiring nine experimental 
data points). As an alternative to theoretical 
models, linear, quadratic or higher polynomial 
functions can be used. Quadratic [16,17] and 
piecewise-quadratic [18] interpolants are fre- 
quently used for describing the influence of pH 
in RPLC. Lopes Marques et al. [19] have sug- 
gested the use of so-called smooth-surface inter- 
polants in situations in which adequate model 
equations are lacking. 

Linear and quadratic interpolations can easily 
be performed. An analytical expression for inter- 
polating data according to a sigmoidal function 
(eqn. 3) can also be derived. Assume that the 
pH is varied (with other parameters, including 
composition constant) and that three data points 
(numbered 1, 2 and 3) have been recorded. With 
x denoting the e 

a 
uivalent hydrogen ion concen- 

tration (x = 10ep ) the three data points can be 
described as 

k = XlkHA + KkA 
1 

X1 +K, 

k2 = x*k;$k, 
a 

k _ X3klA + K&A 
3- 

x3 + Ka 

(10) 

(11) 

(12) 

From these three equations, the unknown co- 
efficients (K,, kHA and kA) can be eliminated, 
after which the retention at any pH can be 
immediately predicted. The resulting expression 
for the capacity factor at x. is 

k. = - 
k,k, + t9k2k3 - (0 + l)k,k, 

Ok, - (0 + l)k, + k, 

with 

e=(E)(s) 

(13) 

(14) 

When interpolation takes place at regular pH 
intervals, 8 becomes a simple constant. For 
example, when pH, = pH, - 0.5, pH, = pH. + 
0.5 and pH, = pH. + 1.5, we find 8 = -0.2233. 

Using eqns. 13 and 14, sigmoidal interpolation 
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is computationally not more difficult than quad- 
ratic interpolation. However, Lewis et al. [ll] 
have found that sigmoidal interpolation may in 
some instances give rise to anomalous results in 
terms of “imaginary” values of k,- (or k,,+) or 
K,. Especially when none of the three data 
points is close to the inflection point (say pK, - 
14 pH < pK, + l), unrealistic values for the 
dissociation coefficient may be obtained. How- 
ever, as long as k. and not K, is the desired 
outcome of the calculations, anomalies in the 
latter parameter are not necessarily indicative of 
poor interpolations. Likewise, negative values 
for the capacity factor of the ionized species may 
occur, but such values may even be physically 
meaningful, i.e., they may arise from electro- 
static exclusion of the ions. In the Results section 
the usefulness of sigmoidal interpolation for 
retention as a function of pH will be discussed in 
more detail. 

In addition to k., the dissociation coefficient 
K, can easily be calculated from three ex- 
perimental data points. The appropriate equa- 
tion is 

K = _ Bk,x, + Cl- Pkxz - kxj 
a Pk, + (I- B)k, -k, (15) 

with 

p=E (16) 

6. PFtACI’ICAL CONSIDERATIONS 

The different models described above have 
different requirements for their practical im- 
plementation. The complexity of using the model 
roughly increases with increasing complexity of 
the model itself. Linear interpolation between 
individual data points is obviously easiest in 
practice. Even in two dimensions (pH and cp) it 
is relatively straightforward to identify the three 
experimental locations surrounding each particu- 
lar point in the parameter space and to perform 
the interpolation. Linear interpolation is used 
extensively in commercial software. 

Non-linear interpolation is more difficult. The 
algorithms required may be complex, but they 
have typically been developed for other (“gener- 
al”) purposes and standard software procedures 

can usually be called upon. Eqn. 13 facilitates 
rapid sigmoidal interpolation. All interpolation 
routines tend to be quick and undemanding as 
far as processing time and computer memory are 
concerned. 

Fitting non-linear models to data sets is a more 
involved approach in practice. Routines for non- 
linear regression are contained in many software 
packages, but the iterative process requires a set 
of initial estimates for the coefficients to be 
determined. These initial estimates have to be 
provided by the chromatographer and the regres- 
sion process may put very high demands on their 
accuracy. Lopes Marques and Schoenmakers 
[20] have described a method for automatically 
obtaining accurate initial estimates for a par- 
ticular (3 x 4) experimental design. They also 
described a parameter transformation, which 
made the accuracy of the initial estimates less 
critical. 

Non-linear least-squares procedures also suffer 
from a general lack of robustness. Convergence 
of the process to the optimum set of coefficients 
may be hampered by the (un)availability of data 
points (leading to singular matrices) and by the 
occurrence of very large or very small numbers 
at intermediate stages (leading to overflow or 
underflow situations). 

7. GENETIC ALGORITHMS 

Genetic algorithms (GA) offer an alternative 
approach for establishing the coefficients in a 
complex non-linear equation such as eqn. 9 [20]. 
The idea behind GA has been borrowed from 
evolution theory. In essence, a set of trial solu- 
tions is formed, from which only the best are 
retained. These serve as the basis for creating a 
new set of solutions through “evolutionary” 
processes (cross-over and mutation). 

The application of a GA for the present 
purpose can be described by the following three- 
step process (see also ref. 20). First, a possible 
solution to the problem is represented by a bit 
string. For example, when trying to fit eqn. 3 
every solution is a set of values for the three 
parameters kHA, kA- and K,. These can be 
expressed as binary numbers over a given range. 
The precision depends on the number of bits 
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dedicated to each parameter. If S-bit resolution 
is chosen and the ranges are 0 s kHA s 50, - 1 s 
k, ~2 and O<pK,< 14, then the string 
10101000-00101111-01001000 (where the hy- 
phens are added for clarity), corresponding to 
the decimal numbers 168, 47 and 72, represents 
the solution k,, = 33, kA = -0.45 and pK, = 
3.95. Every other bit string corresponds to a set 
of three values within the indicated ranges and, 
conversely, every set of three parameter values 
within these ranges can be approximated by a bit 
string. 

Second, one must be able to assign an objec- 
tive quality to every possible bit string. In our 
case, this can be done by comparing the model 
that corresponds to the bit string with ex- 
perimental data. For example, using the above 
values for kHA, kA- and K, we can calculate 
capacity factors of 29.6, 2.3 and -0.4 at pH 3, 5 
and 7, respectively. If the experimental values at 
these three pH values are known to be 22, 7 and 
1, respectively, then we can calculate the sum of 
squared deviations (SSQ) (calculated - 
experimental) as 7.6’+ (-4.7)2 + (-1.4)2 = 
81.7. Every possible solution (bit string) can be 
measured against the same three experimental 
data points in terms of an SSQ. The best solution 
is that with the lowest SSQ value. 

Third, the best solution can be found by 
starting with an arbitrary set of randomly gener- 
ated bit strings and manipulating these in an 
evolutionary manner. If the initial set contains 
100 solutions, we can select the best ten of these 
based on the SSQ values. We may then generate 
a new set of 100 by randomly combining parts of 
one bit string with part of another. For example, 
the above string 10101000-00101111-01001000 
maybe crossed with the string 01001011- 
01110100-00111010 to yield 101010000- 
00~110100-00111010 or 010010x00-00101111- 
01001000. Finally, a few of the bit strings in the 
new set may be altered at one position (muta- 
tion), with the idea of covering all possible areas 
of the parameter space. Thus, the above string 
010010x00-00101111-01001000 may be trans- 
formed into the string 010010x00-OOlOl~ll- 
01001000. 

GA offer a robust means to find the global 
optimum, i.e., the best values for the coeffi- 

cients. However, the process is relatively slow 
and of an approximate nature (more accurate 
solutions require longer bit strings and, thus, 
more computation time). A much more complete 
description of genetic algorithms and their appli- 
cations in analytical chemistry can be found in a 
tutorial article by Lucasius et al. [21]. 

8. EXPERIMENTAL 

All calculations reported in this paper were 
performed in Lotus l-2-3 Spreadsheets (Re- 
lease 2.4; Lotus, Cambridge, MA, USA) on a 
Compaq (Houston, TX, USA) 386s/20 personal 
computer. 

9. RESULTS AND EVALUATION 

9.1. Accuracy of linear and quadratic 
interpolation 

To discuss the accuracy of linear and quadratic 
interpolation of retention vs. pH data, we shall 
assume the simple model of eqn. 3 to be valid. 
The curve depicted in Fig. 1 will form the basis 
of the discussion. Linear interpolation can take 
place between any two points on the curve. It is 
obvious that on either side of the inflection point 
the interpolation error will increase with increas- 
ing distance between the points. Fig. 3a illus- 
trates the error obtained by interpolating over 
l-unit intervals in pH for all points between pH 
0.5 and 13.5 at 0.5 unit intervals. The errors 
shown in Figs. 2 and 3 are obtained by subtract- 
ing the value obtained from the simple sigmoidal 
curve from that obtained through interpolation. 
For example, the error at pH 3 can be found 
from e(3) = 3 f(2.5) + 4 f(3.5) -f(3), where 
e(pH) denotes the error and f(pH) the sigmoidal 
function (eqn. 3). Errors are largest in the 
vicinity of pK,, except when the two data points 
happen to be on either side of the inflection 
point. The deviations between the sigmoidal 
curve and the linear interpolation are found to 
be considerable. Fig. 3b illustrates the same 
errors in terms of percentage points. The re- 
sulting curve is non-symmetrical, with the largest 
errors occurring at the lowest k values (high 

PH). 
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t 

Fig. 3. Error induced by linearly interpolating the sigmoidal 
curve in Fig. 1 over intervals of 1 pH unit. (a) Absolute 
errors in k.; (b) relative errors (%). 

Inevitably, prediction errors in capacity fac- 
tors, as depicted in Fig. 3, will also lead to errors 
in predicted resolution values. When using linear 
interpolation, the errors in k for each solute will 
be characterized by a curve such as Fig. 3a. 
Large errors will obviously occur when the 
curves are “out-of-phase”, as will be the case for 
an acidic and a basic compound with the same 
pK, values. Also, large errors will result for two 
acidic or two basic compounds, the pK, values of 
which are one or two units apart (two curves as 
Fig. 3a shifted by one or two units). However, 
even a much smaller shift will lead to large errors 
in resolution, as is illustrated in Fig. 4. Fig. 4a 

Fig. 4. Error obtained by pr&cting resolution values 
through linear interpolation of sigmoidal retention curves 
over 1 pH unit. (a) Retention curves (kHA,l = k,,,* = 10, 
k,-,, = k,-,, = 0.1, pK,., = 5, PK.,, = 5.5); (b) absolute error 
in predicted resolution; (c) relative error in predicted res- 
olution. 
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shows the retention curves for two acidic com- 
pounds, with identical values for kHA (10) and 
kA- (O.l), but with different pK, values (5 and 
5.5, respectively). Fig. 4b illustrates the differ- 
ence between the R, values obtained by linear 
interpolation over one pH unit and the true 
value obtained from the sigmoidal retention 
curves. Large errors of up to several resolution 
units are found. Fig. 4c shows the relative errors 
in resolution, which are seen to be highest when 
resolution is negligibly low (at high and low pH 
values). However, over most of the region where 
the two compounds can be resolved the error in 
the resolution predicted by linear interpolation 
is much larger than the few percent thought 
tolerable for the purpose of pH optimization 

WI. 
Fig. 5a illustrates the error found between the 

sigmoidal curve and a quadratic interpolation 
using data points -3, +3 and +l+ pH units 
removed from the point for which an interpo- 
lated value is sought (the target, indicated by 
pH* and the interpolated capacity factor, k*). In 
this instance the errors are smaller around the 
upper and lower bends in the sigmoid, but larger 
around the inflection point. Similar, but oppo- 
site, errors are found when the data point at + 13 
pH units is replaced by one at -1; pH units 
(Fig. 5b). The largest errors still exceed 0.5 units 
in k, similar to the maximum error found with 
linear interpolation over 1 pH unit (Fig. 3a). The 
maximum error can be reduced by piecewise 
quadratic interpolation (Fig. 5~). This implies 
taking the average of two possible quadratic 
interpolations. To do so, four instead of three 
data points are required. For comparison pur- 
poses, the two quadratic interpolations (lines) 
and the average values (symbols) are all shown in 
Fig. 5c. 

Table 2 summarizes the errors obtained by the 
various interpolation methods on the curve of 
Fig. 1. Errors are listed over all possible points 
across a wide range (i.e., those points for which 
the encompassing data points exist for all inter- 
polation procedures), as well as for a limited pH 
range around the pK, value of 7. Because 
relative errors depend greatly on the value of k, 
absolute errors are thought to provide a better 
indication of model accuracy. 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

a.1 - 

o- 

-0.1 - 

-0.2 - 

0.5 - 

04 - 

03 - 

0.2 - 

0.1 - 

o- - 

-0.1 - 

-0.2 - 

-0.3 - 

-0.4 - 

-0.5 - 

-0.6 ’ , 
0 I I I B I I 

2 6 10 I2 11 

Fig. 5. Absolute errOrs induced binquadratic interpolation of 
the sigmoidal function in Fig. 1. (a) Using data points at -+, 
++ and +lt pH units from the target; (b) using data points 
at - +, + i and -15 pH units; (c) piecewise quadratic 
interpolation (symbols), using the average of (a) and (b) 
(lines). 
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TABLE 2 TABLE 3 

AVERAGE DEVIATION OF VARIOUS INTERPOLA- 
TIONS FROM THE CURVE SHOWN IN FIG. 1 

DEVIATIONS BETWEEN EXPERIMENTAL DATA 
POINTS AND VALUES OBTAINED BY VARIOUS IN- 
TERPOLATION METHODS 

Interpolation Data points pH N Average error 
(relative) range 

Absolute % 

Linear 

Quadratic 

Quadratic 

-+, ++ 2-12 21 0.12 9.1 
6-8 5 0.39 15.6 

-f, ++, 2-12 21 0.09 5.2 
+1+ 6-8 5 0.27 8.6 
-+, ++, 2-12 21 0.09 12.1 
-1; 6-8 5 0.27 7.9 

Retention data on ten aromatic amines (mobile phase 65% 
buffer-35% water; 25 x 4.6 mm I.D. StableBond CN col- 
umn; 25 m&f buffers of sodium citrate (pH 5 4.0) or potas- 
sium phosphate (pH <4); temperature (35°C) at 0.5 unit 
intervals over the range 2 < pH < 6.5 [12]. 

Interpolation Data points 
(relative) 

9.2. Precision of interpolation methods 

When interpolation procedures are applied to 
experimental data, deviations between predicted 
and experimental points can arise not only from 
model inaccuracies, but also from imprecisions in 
the data (i.e., experimental error). To test the 
performance of interpolation methods in prac- 
tice, we took a set of data from the literature 
[ll]. We considered retention data for a series of 
ten aromatic amines recorded at ten different pH 
values at 0.5 unit intervals in the range 2 < pH < 
6.5. These data were selected for demonstration 
purposes. We do not wish to suggest that these 
data are more or less accurate or precise than 
other published data sets. Interpolation was 
performed using retention times rather than 
capacity factors. Interpolation algorithms such as 
eqn. 13 are equally valid in this case. 

Linear -), ++ 80 0.23 2.4 

Quadratic -+, +f, +1+ 60 0.25 2.6 
Quadratic -f, ++, -1+ 60 0.16 1.6 
Average -4, ++, +1+, -I$ 40 0.19 1.9 

quadratic 

Sigmoidal 
Sigmoidal 

(see below) a greater precision can be expected 
when the points needed for the interpolation 
algorithm are selected in the direction of the 
inflection point (i.e., towards pK,). This is 
because the greatest variation in retention occurs 
around the inflection point. The precision is 
highest when the magnitude of the variations in 
retention are much larger than the experimental 
error. 

Table 3 summarizes the results obtained by 
various interpolation methods. The figures indi- 
cate the deviations between experimental and 
interpolated values. The first thing to notice is 
that the errors in Table 3 are small compared 
with those in Table 2. This is due to the fact that 
most of the data points are on the upper plateau 
of the sigmoidal curve. Also, relative errors in 
retention times are smaller than those in the 
corresponding capacity factors, especially for low 
values of k. 

Unlike the situation in Table 2, the four-point 
piecewise quadratic procedure does not lead to 
consistently better results than the (best of the) 
three-point quadratic interpolations. 

The results of the sigmoidal interpolation are 
not as good as might have been expected. 
Especially when a point 1; pH units above the 
target is included, the results are worse than with 
any of the other interpolation methods. Sigmoi- 
da1 interpolation towards pK, does yield better 
results, but these are still inferior to those 
obtained by quadratic interpolation using the 
same data points. 

A second observation from Table 3 is that the 
inclusion of a data point 14 pH units below the 
target leads to better results than the inclusion of 
a point 13 pH units above the target. Generally 

An explanation for these observations can be 
found by inspecting graphical representations of 
the results of sigmoidal interpolation. Fig. 6 
shows two representative examples. In each of 

N Average error 

Absolute % 

-+, ++, +1+ 60 0.48 4.3 
-i, ++, -1; 60 0.20 1.8 
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P 
E 
5 

Fig. 6. Examples-of the results obtained by sigmoidal inter- 
polation through three experimental data points. 0 = Points 
used for the interpolation; + = other available data points. 
(a) 4-Chloroaniline; (b) 3,4-dichloroaniline. Data taken from 
ref. 11. For experimental details, see Table 3. 

the two graphs three data points (pH 2.5, 3.5 
and 4.5, indicated by diamonds) have been used 
to establish values for retention times (t,) for all 
pH values in the range between 2 and 5. For 
most of this range interpolation occurs. At either 
extreme extrapolation takes place. 

The results of the sigmoidal interpolations 
(drawn line) in Fig. 6a are seen to provide a 
good representation of the experimental data. 
The data points not used for the interpolation 
(indicated by +) fall close to the line. Fig. 6b 
provides a different perspective. The resulting 

curve is seen to be hyperbolic (with a vertical 
asymptote around pH 3.1) rather than sigmoidal 
and the additional experimental data turn out to 
be nowhere near the calculated curve. Many 
examples of such behaviour were encountered 
when applying sigmoidal interpolation to the 
data set in question. 

Qualitatively, the behaviour illustrated in Fig. 
6b can be understood easily. The interpolation 
procedure calculates a curve through three data 
points, which is not a fitted line but an exact 
solution. In the case of Fig. 6b the central data 
point used for the interpolation (t2) is the highest 
of the three values. This implies that a sigmoidal 
curve as illustrated in Fig. 1 cannot be fitted 
through the data. The “line” that does obey eqn. 
3 and passes through the three data points is 
indeed hyperbolic. The value found for K, is 
such that the denominator of eqn. 3 approaches 
zero around pH 3.1. Clearly, there are situations 
in which the use of sigmoidal interpolation 
should be avoided. Two such situations have 
been identified above, viz. (i) when t, is the 
highest (or lowest) of the three experimental 
values and (ii) when eqn. 15 yields a value for K, 
that is negative and the magnitude of which is 
within the range of X (lOepH) values studied 

(Xi,, G -Ka S Xhigh)’ 
A more general indication of the risks in- 

volved in applying sigmoidal interpolation can be 
obtained by considering the error in k. (or t.) 
caused by experimental errors in the data points. 
By derivatizing eqn. 13 towards k, , k, and k, the 
following equations can be obtained: 

Cl+ e)(k, - k$ 
Ak* = [Ok, - (1 + B)k, + k,]’ . Akl (17) 

-8(k, - k,)’ 

Ak* = [Ok, - (1 + f3)k, + k,]’ eAk2 
(18) 

and 

e(l + B)(k, - k,)* 

Ak* = [Ok, - (1 + e)k, + kJ2 ’ Ak3 (19) 

Eqns. 17-19 predict the effects of small errors in 
the experimental data on interpolated values. 
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Fig. 7. Derivative function by which errors in the central 
interpolation point (k,) are multiplied to obtain errors in the 
result (k.) according to eqn. 18. 

The effects of errors in the central point (eqn. 
18) turn out to most severe. Fig. 7 provides an 
illustration for the case of sigmoidal interpola- 
tion using data points at pH. +OS, pH. -0.5, 
and pH. - 1.5 on the curve shown in Fig. 1. The 
vertical axis refers to the derivative dk.ldk,, i.e., 
the factor relating the two errors in eqn. 18. For 
pH. = 8 the smallest errors are obtained. When 
substituting the data point at pH, + 1.5 for that 
at pH, + 1.5 the minimum shifts to pH. 6. In 
either case, the most favourable range for inter- 
polation is x2 < K, < x3, i.e., the inflection point 
is included in the interpolation range. Away 
from the inflection point, the error increases, 
taking on dramatic values on either side of the 
curve. The values of over 100 on either side of 
the curve in Fig. 7 imply that a small experimen- 
tal error in k, of 0.01 unit result in an error in 
the predicted (interpolated) values of k. of more 
than a full unit. Clearly, sigmoidal interpolation 
based on three data points can be a “frustrating 
experience” [ll] if it is not applied with care. 
The process should be restricted to situations in 
which pH has a large effect on retention. More- 
over, an automated system should contain built- 
in checks, “warning flags” [ll] and, ideally, 
“self-correction” procedures in the form of fall- 
back options (e.g., changing from sigmoidal to 
quadratic interpolation) once problems have 
been diagnosed. 

9.3. Regression analysis 

One possible way of reducing the effects of 
experimental errors on predicted capacity factors 
is to increase the number of data points and to 
broaden the pH range covered. Clearly, the 
hyperbolic function shown in Fig. 6b will not 
result from a process in which all seven data 
points shown in this figure are used to fit a 
sigmoidal curve. The simultaneous use of more 
data points is not by definition inefficient. For 
example, when data points at different mobile 
phase compositions (e.g., different methanol-to- 
water ratios) are available, the simultaneous use 
of all these points will help avoid the occurrence 
of artifactual asymptotes. When twelve data 
points (four pH values at three compositions) are 
used, the effect is not observed [8,13,20]. How- 
ever, when interpolating .first in one direction 
(pH or composition) and then in the other, the 
danger persists [22]. 

The use of genetic algorithms may also be 
advantageous, because in this case a sensible 
search area has to be defined in terms of mini- 
mum and maximum values for each coefficient. 
The occurrence of asymptotes in the pH range 
studied can thus easily be avoided. 

10. CONCLUSIONS 

The variation of retention with pH for mono- 
protic acids and bases is typically described by a 
sigmoidal function. However, a number of 
causes of deviation from this simple model can 
be identified. Models for multiprotic acids and 
bases and for zwitterionic solutes still need to be 
investigated. 

When linear or quadratic interpolation is used 
to approximate a sigmoidal function, significant 
errors may be introduced. For quadratic (and 
sigmoidal) interpolations it turns out to be ad- 
vantageous to select data points stretching to- 
wards (and ideally beyond) the inflection point 
(pK,), rather than away from it. 

Sigmoidal interpolation using three ex- 
perimental data points can easily be performed 
using simple equations. However, for real data it 
is not a robust process. The effect of experimen- 
tal errors can be dramatic, especially in regions 
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where pH has little effect on retention, i.e., for 
neutral solutes or on the first parts of a sigmoidal 
curve. In that case quadratic interpolation using 
data points shifted towards pK, is the preferred 
process. 

The availability and simultaneous use of more 
data points than the required minimum of three 
greatly increases the reliability of retention 
modelling. When considering simultaneous varia- 
tions of pH and eluent composition, all data 
points must ideally be used for building a single 
reliable model describing retention as a function 
of both parameters. 
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